BOLT: A Lightweight OpenMP Library
for Massive Fine -Grained Parallelism

~ Presenter

Shintarolwasaki Pavan Balaj
ArgonneNational Laboratory = Argonne National Laboratory
Email:siwasaki@anl.gov Email:balaji@anl.gov

=CIP @ ENERGY

EXASCALE COMPUTING PROIECT

mailto:balaji@anl.gov
mailto:siwasaki@anl.gov

5
Exploiting Parallelism for Efficient Computing

[nght] InteI Xeon Phi (Knights Landlng) 72 cores 288 HWTs

- HH

(intel

gecn Phi™ p rocessor

NN
LR
[

T

£
Emm

e

Hi H | HH [Left] ARM ThunderX2 up to 32 cores, 128 HWTs
(https://www.servethehome.com/caviunthunderx2review-benchmarksrealarm-serveroption/)

1.0E+5)

b 23

1OE+1 ¥

CPU Frequency
[MHZ]

More
Complex LOE-L %
1968 1982 1995 2009 2023
(molecular dynamics) e
g g 100 o0
0 0
[CIRY))
o 10 % @
Biology : i S § e
(heart murmur simulation) Graph Analytics BE 1 s oo
H*

1968 1982 1995 2009 2023
Year # of CPU cores

A H Ig h Iy paral I el CO m p Ute reso u rces CPU DB: (http://cpudb.stanford.edu/)

A Complex workloads across several software stacks

A HowaboutOpenMP?

Efficient Thread/Task Management for OpenMP + X?

A OpenMP + OpenMP
¢ Nested parallel regions

¢ Creation of OpenMP threads at
each level of parallel regions
can exponentially increase the
total number of threads.

Applications

OpenMP * MPI

User Applications

l | OpenMPparallelized code |
Scientific Library
[OpenMPrparalielized code |

Math Library A} | Math Libréry B

I OpenMRparallelized co I

v este
HighLevel L
Runtime System
Fy_ \ 4

OpenMP Runtime System

A OpenMP + MPI

¢ Poa performance of
multithreaded MPI because of
heavy lock contention.

¢ MPI + OpenMP tasks?

AhLISyat b 20KSNJ LI NI ff St NXzy

3

BOLT: OpenMP over Argobots [*]

A Uselightweight Argobots threadfor OpenMP threads and tasks

OpenMRParallelized Program

BOLT OpenMP || OpenMP OpenMP OpenMP
|_Thread Thread Thread Thread
ULT ULT
Argobots
CXe CXe

Intel | OpenMP || OpenMP || OpenMP || OpenMP
OpenMP| Thread Thread Thread Thread
Pthreads Pthreads Pthreads Pthreads
Traditional OpenMP (Intel OpenMP)
ng gma omS;?p 'CIIOIiEf Sky‘a_kasuzvff: ads (56)
@ 1E-d o sty sz
Gg) 1E_2 comp_20000_cycles(i, j);
_5 1E-3
3 1E-4
2
W 1E-5
1 10 100
BOLT Outer loop Countd(;lc)C OpenMP
Intel OpenMP —e— LLVM OpenMP
......... (|dea|)

Performance of Nested Parallel Regions

SLATE Library

OpenMP taskparallelized
el
e

II OpenMP parallelized cod

OpenMP Runtime System

Application Using ECP SLA||'E

GFLOPS

[*] ECP SLATHttps://icl.utk.edu/slate/

2500
2000
1500
1000
500
0

——@— BOLT
Intel OpenMP (IOMP)
IOMP (nesting disabled)

1 # of Inn%cr) Threads%00

ECP SLATE: Cholesky factorizattpat(rf)

Lightweight OpenMP threads outperfortaskloog

WF 6

{® Lol &k A

FEao a.

h[¢Y

BOLT can exploit nested parallel regions.

h4J8 BEA T & K BB hRBDBEIT PAPERI Wit wSIAz2ya

griG @B

a S

Design of BOLT

pr ““%% U.S. DEPARTMENT OF
{®) ENERGY

Argobots: A Low -Level Lightweight Threadlng Library

A Argobots is an opesource project

A Lightweight Low-level Threading Framework

i d €) GitHub

¢ URLNttps://argobots.org/

I Argobots: A Lightweight Low-level Threading Framework

¢ Maintained by Argonne National Laboratonr:”

which was developed as a part of the Argo project, is a lightweight runtime system that supports integrated computation and
ovement wit col jrectly I lowest tru re and v
utfcn me data mov emory mappi d data tegies

w Collaborators: UIUC, Univ. of Tennessee, PI
Intel, UToky@ ~ wA 1 Sy Brgo e &

NATIONAL LABORATORY

implements.lightweight parallel work units, such as
ight thrsads or tasklets, that cai icall

THE UNIVERSITY OF

e it TENNESSEE J{ILLINOIS

KNOXVILLE

w Supported by DOE @ ENERGY EC'P

A Unleashesiserlevel threads (ULTs) e
A Provides for the future scalable systems.
COEGNBYSte fAIK(IFSAIKI
¢ Rich and powerful threading capabilities Execution

Scheduler Scheduler Scheduler

Execution
Stream

Execution

Stream Stream

: OSlevel thread || OSlevel thread || OSlevel thread ||=

¢ Lowlevel customizability T coe | coe coe

: Argobots :

6

https://argobots.org/

What is a User-Level Thread (ULT)?

A A userlevel thread (ULT) implements all threading operations

IN user space.

" Thread scheduling (= context B
E - e - 22 switching) involvéneavy system g g g g g : ; ;
HEHEHHEHEBBE gca”S y Small overheads. |
oo | o | G | £ | | | [| oW | 14l gl gl
(4 Execution Stream Execution Stream
|4 Userlevel threads (ULTs) are Pthreads Pthreads
Heav N running on Pthreads; schedulin;
is done byuserlevel context
_switchingin user space)
Naive Pthreads Argobots g
A Advantages of ULTSs: |
Fork-Join Performance on KNL
1. Lightweight thread with low g 1E+6
contextswitching overhead S 1E+4 I > 350x
<
2. Multiple ULTs can be mapped to 3 1e+2 .
. @]
a single O%evel thread “ 1E+0
Pthread Argobots ULT

3. Users can control scheduling

BOLT: BOLT is OpenMP over Lightweight Threads

A BOLT: an OpenMP library over Argobots

¢ Based on LLVM OpenMB.0
¢ Provideanost of the latesOpenMP features.
¢ Maps both OpenMP threads and tasks to Argobots ULTSs.

w Tiny threading overheads
¢ High ABI compatibility with LLVM/Intel/GNU OpenMP

OpenMPRParallelized Program OpenMPParallelized Program
IIIIIIIIIIIIIIIIIIIIIIIIII .IIIIIIIIIIII 4AEEEEENEENEEERER ; EEEEEEEEEEEE AN EEEEENEEEEESN EEEEEEEEEEEE ANEENEEENEEEEES
Intel OpenMP || OpenMP || OpenMP || OpenMP BOLT OpenMP || OpenMP [| OpenMP || OpenMP
OpenMP Thread || Thread || Thread || Thread Thread || Thread || Thread || Thread
: ULT ULT ULT ULT :
Pthreads Pthreads Pthreads Pthreads E Argobotsm ------------ CanammmmmmnEd nmmmanaaREEE E
: Executlon Stream Executlon Stream .
lllllllllll G EEEEEEEEEEEY EEEEEEEEEEEE' G EEEEEEEEEERYD E Pthreads Pthreads E
Traditional OpenMP (Intel OpenMP) BOLT

How does BOLT work?

#pragma omp parallel for \
) num_threads (4)

A Parallel region (e.g#pmp paralle! for
for (i =0; i <4; i++)
creates OpenMP threads over ULTs. | kemeldaal i1 i)

A Work stealing can distribute work.

OpenMPRParallelized Program

ronihiD

OpenMP
Thread

ULT
Pool Pool
— OpenMP
Finish all threads!L Thread
ULT
C OpenMP taSk WOI‘kS Slmllarly: bUt Execution Stream Execution Stream
. . . Pthreads Pthreads
this talk omits the detals.

BOLT

Lightweight Threads for OpenMP+OpenMP

#*“™ U.S. DEPARTMENT OF
(@) ENERGY

Lightweight Threads for OpenMP + OpenMP
A Case of oversubscriptions: nested parallel regions

Code Example

OpenMP Runtime System

A OpenMP parallelizeswultiple software stacks

A Nested parallel regions create OpenMP threagiponentially

#pragma omp parallel for
for (i =0; i <n; i++4)
dgemrtmatrix[n], ...);

|__Thread |:

#pragma omp parallel for | e User Applications
for (i =0; i <n i+4) | ~.L__OpenMPparallelized code __|

dgemymatrix[n], ...); | e 1 Scientific Library

. | OpenMPparallelized code |

/IBLASlibrary e *1Math Library A| | Math Library B
V0|d dgem\(...) { _ I OpenMRparallelized code I [

#pragma omp parallel for m—T -

for (i =0; 1 <n; i++) HléhtéVeI“

dgemv_seqdata[n], i), | _p- R‘Untim'e System

e \

__ ' Parallel Reqgion

1 Thread L Thread _

void dgemr(..):
#pragma omp parallel for
for (i =0; 1 <n; i++);

[Thread || Thread

Parallel Region Parallel Region

Threacl Threau{ Threa4
Core Core

Threa Threa Thread

Parallel Region Parallel Region

Threat{lThrea ThrearI Threat{
Core Core

11

Threa Threa

Can We Just Disable Nested Parallelism?

A How to utilize nested parallel regions?
¢ Enable nested parallelism: creation of exponential the number of three

¢ Disable nested parallelism: adversely decrease parallelism

A Example: strong scaling on massively parallel machines

|s the outer parallelism enough to feed work to all the cores??J?
N\

#pragma omp parallel for
for (i =0; i <n; i++) Core Core Core Core Core Core Core Core
comp(cells[i],...); Core Core Core Core Core Core Core Core Core Core Core Core
Core| Core

‘ ‘
void comg...): NOde

N d Core Core Core Core Core Core Core Core
[..]; odae Core Core Core Core Core Core Core Core
#pragma omp parallel for

for (i =0; i <n; i+ Multicore Manycore Node Node

|

Manycore + Many nodes

12

e
Two Directions to Address Nested Parallelism

A Nested parallel regionsave been known as a problem since

OpenMP 1.0 (1997).
¢ By default, OpenMP disables nested parallelisy) ?Z%ET?Z’.Zi'iiflff::?

A Investigated two directions to address it:

1. Useseveral workaroundsnmplied in
the OpenMP specification.

=> |nefficient/unfeasible if users do not know
parallelismin other software stacks.

2. Instead of O&evel threadsyse lightweight threads as OpenMP threads

=> It does not perform well if parallel regions are not nes(ed., flat).

w It does not perform well even when parallel regions are nested.

=> Need a solution to efficiently utilize nested parallelism.

wF 8 {AYyOS hLlSyat pons GKS RSFlrdzZ G 68502YS8a d&aAYLE SYSy il dlelisnyby defsul. .
13

Using ULTs in LLVM OpenMP is Easy

LLVM

OpenMP| Thread

OpenMPRParallelized Program

SEEEEEEEEEmH

OpenMP || OpenMP || OpenMP || OpenMP
Thread Thread Thread
Pthreads Pthreads Pthreads Pthreads

LLVM OpenMP 7.0

OpenMRParallelized Program
LLVM ll
OpenMP OpenMP || OpenMP || OpenMP || OpenMP
over ULT | Thread Thread Thread Thread
ULT layer | ULT ULT ULT ULT
....................... Sasnamssasmaf nmmsmamsEEmSE
(Argobots) Scheduler Scheduler
Pthreads Pthreads

Core Core

LLVM OpenMP 7.0 over ULTROLT baseline

A Replacing a Pthreads layer with that of Argolisteasy

A52Sa

G

KS

aol

28t Ay S

h[¢ ¢

LJS

14

ULT-based OpenMP is not New.

A Use ULTs to avoid oversubscriptions ofl@®! threads.

A Several UL-Based OpenMP systerhave been proposed.

¢ NanosCompilefl], Omni/ST [2]OMPI[3], MPC [4]ForestGOMIP5],
OmpSgOpenMP compatible mode) [G]jbKOMRoT 6 X

[1] Marc et al. NanosCompilerSupporting Flexible Multilevel Parallelism Exploitation in OpenMP. 2000

[2] Tanaka et al., Performance Evaluation of OpenMP Applications with Nested Parallelism. 2000

[3] Hadjidouka®t al., Support and Efficiency of Nested Parallelism in OpenMP Implementations. 2008

[4] Péracheet al., MPC: A Unified Parallel Runtime for Clusters of NUMA Machines. 2008

[5] Broquediset al.,ForestGOMPAN Efficient OpenMP Environment for NUMA Architectures. 2010

[6] Duran et al., A Proposal for Programming Heterogeneous {@olte Architectures. 2011

[7] Broquediset al.,libKOMR an Efficient OpenMP Runtime System for Both Bork and Data Flow Paradigms. 2012

A However, these runtimes do not perform well for
several reasons.

¢ Lack oOpenMP specificatioaware optimizations

¢ Lack of general optimizations For applego-apples comparisonye will
focus on the Ul-based LLVM OpenMP.

15

Simple Replacement Performs Poorly

/Runonab56 -core Skylake server

#pragma omp parallel for num_threads (N)
for (int i =0; i <N; i++)
#pragma omp parallel for num_threads (28)
for (int j=0;)<28; j++)

comp_20000_cycles(i, j);

Nested Parallel Region (balanced)

¢ Faster than GNU OpenMP
w GCC

¢ Sesoamong ULPasedOpenMPs
w MPC,OMPj Mercurium

¢ Slowerthan Intel/LLVMOpenMPs
w Intel, LLVM

1E+0
' Lower is better
1E-1
v,
[¢D)
£ 1E-2
[
i)
§ 1E-3
X
i
1E-4
1E-5
1 10 100
of outer threads (N)
—eo—BOLT (baseline) GCC —e— MPC
—e— OMPI —e— Mercurium Intel

——LLVM = e Ideal

Popular Pthread®ased OpenMP

Stateof-the-art ULTbased OpenMP

| LLVM: LLVM OpenMP with LLVM/Clang 7.0
" MPC: MPC 3.3.0

GCC: GNU OpenMP with GCC 8.1
Intel: Intel OpenMP with ICC 17.2.174

OMPi OMPI1.2.3 andpsthreadsl.0.4
Mercuriumt OmpSgOpenMP 3.Tompad 2.1.0 + Nanos++ 0.14.1

16

Solve Scalabllity Bottlenecks (1/2)

Thread |

Parallel Region

(

Team cache]L[Teamcache J||[Teamcache][|[Teamcache |}

Thread

Thregg

4 Thread

.t

Paraial Reglon '

ThreazﬂThrea hreadiiliy !

Parallel Region

Thread desc. pooI

% Team desc. pool

Thread ID counter

(/reaﬂT hreatiIT hrea

‘Thread desc. pool

‘ ‘Team desc. pool

‘Thread ID counter

A Resource management optlmlzatlons
1. Divides a large critical sectignotecting all threading resources.
w This cost is negligible with Pthreads.

2. Enablemulti-level caching of parallel regions

w/ | ffSR

aySauSR K2u 0SlkYaé Ay

[

+

17

a

Solve Scalability Bottlenecks (2/2)

A Thread creation optimizations

3. Binary creation of OpenMP threads

Primary

(Thread 0 4
\ AN Thread 1

Primary
Thread O

Y
2 (Thread2) v | Theadl | 7
. . - \
v v \ 4 i Thread3 J§ | The critical path gets shorter

Serial Thread Creation (default LLVM OpenMP)

I/ Runonab6 -core Skylake server

#pragma omp parallel for num_threads (L)
for (int 1 =0; i <L; i++)
#pragma omp parallel for num_threads (56)
for (int j=0;]j<56; j++)
no_comp);

Nested Parallel Regions (no computation)

No computation to measure the pure overheads.

Execution time [s]

Binary Thread Creation

-2 BOLT (baseline)
—e—+ Efficient resource management
++ Scalable thread startup
1E-3
1E-4
1E-5

1 10
of outer threads (L)

100

18

Affinity : How to Implement Affinity for ULTs

/Il OMP_PLACES={0,1},{2,3},{4,5},{6,7}

/[OMP_PROC_BIND=spread

#pragma omp parallel for num_threads (4)
for (i =0; 1 <4; i++4)

With proc_bind , threads are bound to places.| €omp(i);

e -
OpenMP Thread G OpenMP Thread 1 _-=-_ OpenMP Thread 2 OpenMP Thread 3
Place 0 Place 1 _-=-_ Place 2 Place 3

A OpenMP 4.0 introducedlaceand prod_bindfor affinity.
¢ OSlevel threadbased libraries (e.g., GNU OpenMP) use CPU masks.

A BOLT (baseline) ignored affinil standard compliant).

A However, affinity should be useful to
1. improve locality and 2. reduce pool contentions.

¢ Note: ULT runtimes use shared pools + random work stealing.

A How to implement place over UI?Ts

19

Implementation: Place Pool

Il OMP_PLACES={0,1},{2,3},{4,5},{6,7}

/[OMP_PROC_BIND=spread

#pragma omp parallel for

for (i =0; 1 <4; i++4)
comp(i);

num_threads (4)

A Place poolgan implement
OpenMP affinity in BOLT.

O'r‘ilenMdP OpenMP
rea, Thread
ULT
A Place pool ULT Place pool Place pool Place pool
OpenMP
Thread
_w ULT
Shared poo I Shared pool Shared pool Shared pool Shared pool Shared pool Shared pool
Scheduler Scheduler 1 Scheduler 2 Scheduler 3 Scheduler 4 Scheduler 5 Scheduler 6 Scheduler 7
Pthreads Pthreads Pthreads Pthreads Pthreads Pthreads Pthreads Pthreads

A Problem:OpenMP affinity setting is too deterministic

20

OpenMP Affinity is Too Deterministic

, L. . Il OMP_PLACES={0,1},{2,3},{4,5},{6,7}
A Affinity ©rbindvar) ISONCe sefall | 7omp_Proc_BIND=spread
#pragma omp parallel for num_threads (8)
f i i =0; i <8; i++
the OpenMP threads Created Or#pﬁc':\r;jtmalomp())parlallel8forI)num_threads (8)
. f (int j=0;)<8; j++)
in the descendant parallel " compli) |

regionsare bound to placesﬁ The OpenMP specification writes sq.

i=0 i=1 i i=2 i=3 : i=4 i=5 i=6 i=7
i=Ni=1
i=0i=2
i=0.i=3 - i
‘;g ;; Limited load balancing. J
. Place pool Place pool Place pool
:| Shared pool| | Shared po

|_Shared pool| | Shared pool| | Shared poolIiE | Shared pool| | Shared poolli
. Scheduler g, . S§heduler 1 =z Schedulerg) SphedulerS : Schedulerg; heduler 5 iz Scheduler@lappgcheduler7:
e aPiRfeads s annnns RiFeads « » 5% » » « PthWeads « - ;if v n s PLF@ATS = 2 438 2 = 0 RHWOAESs = = 4 n = = REVOAES = st b uus RUWEAASs = x = s s s RUNEAGS = =

A Promising directionscheduling innermost threads with
unbound random work stealing

21

Proposed

New PROC BI

ND: O u

OMP_WAIT_POLICY=unset: reset the affinity setting of the specified parallel regic

(Detailed: Thainset thread affinity policy resets thbind-var ICV and thelacepartition-var ICV to their implementation defined values and instructs the execution environment to follow these values.)

/l OMP_PLACES={0,1},{2,3},{4,5},{6,7}
/l OMP_PROC_BIND=spread

/l OMP_PLACES={0,1}{2,3},{4,5},{6,7}
// OMP_PROC_BINDspread ,unset

#pragma omp parallel for num_threads (8) #pragma omp parallel for num_threads (8)
for (int 1 =0; i <8; 1i++) for (int i =0; i <8; 1++)
#pragma omp parallel for num_threads (8) #pragma omp parallel for num_threads (8)
for (int j=0;j<8; j+t) for (int j=0;]<8; j++)
comp(i, j); comp(i , j);
.l ll .: llllllllllllllllllllllllllllllll :: llllllllllllllllllllllllllllllll a
Pageeqg! Prsescy! = PR : PRece!
- _— [] L] - I!‘l[.I I.I .I % r .I I.I
—0 =2 .
~ia They can be scheduled on any 1E-3 ¢ —e—BOLT (baseline)
=0.iza ; + Efficient resource management
=0 Random work stei{ ++ Scalable thread startup
I=0,j=7 . ° —e—+++ Bind=spread
Shared pool Shared 'nnermOSt threads £ —e—++++ Bind=spread,unset
Scheduler 0 Scheduler 1 Scheduler 2 Schedule § 1E.4 i
Pthreads Pthreads Pthreads Pthread 5
i
A Thisscheduling flexibility
1E-5
gives higher performance. 1 10 100
of outer threads (N)

22

Microbenchmarks:
Doubly Nested Loops

Execution time [s]

alpha makes the computation size rando
while keeping the
total problem size. —— il

Large alprﬁ
/Runonab56 -core Skylake server /Runonab56 -core Skylake server
#pragma omp parallel for num_threads (L) #pragma omp parallel for num_threads (56)
for (int i =0; i <L; i++){ for (int 1 =0; i <56; i++){
#pragma omp parallel for num_thLreads (28) int work cycles = get work (i, alpha);
for (int j=0;j<28; j++) #pragma omp parallel for num_threads (56)
comp_20000_cycles(i, j): for (int j=0;]<56; j++)
} comp_cycles (i,j, work_cycles);}
1E+0 1E+0
® o—o——0 Oo—C—O0—O0——C—0—0
1E-1 .
2 1E-1
1E-2 g —o—0—0—0o—0—0—0—06—0—0
1E-3 & 1E-2
5
1E-4 8
N 1E-3 ¢—e o—o—o
1E-5 | STTOTIR. SRS, RTT. Y, A TR FTTPT: TS P £ PP, £ PO R P
Lower is better
1E-6 1E-4
1 10 100 0.1 1 10

of outer threads (L)

—eo—BOLT (baselineye—BOLT (opt) —e—GCC
Intel —e—LLVM —e— MPC

—e— OMPI —e— Mercurium ceeeeeees Ideal

Alpha (A)

—o—BOLT (baselineye—BOLT (opt) —e—GCC
Intel —e—LLVM —e— MPC

—eo— OMPI —e— Mercurium ceeeeeees Ideal

(Ideal): theoretical lower bound under perfect scalability.

23

Execution time [s]

OpenMP Threads vs. OpenMP Tasks

/Runonab6 -core Skylake server
#pragma omp parallel for num_threads (56)
for (int i =0; i <L; i++){
#pragma omp taskloop grainsize(1)
for (int j=0;)<28; j++)
comp_20000_cycles(i, j);
}
1E-2
1E-3
1E4 o e
1E5 LT ‘Lower is better
1 10 100

Outer loop count (L)

—e— BOLT (baseline}j-e—BOLT (opt)

—eo— GCC (taskloop)
—e—LLVM (taskloop)------

|deal

Intel (taskloop)

Execution time [s]

/ Run on a 56

- core Skylake server

#pragma omp parallel for

num_threads (56)

for (int 1 =0; 1 <56, i++){
int work_cycles = get_work (i, alpha);
#pragma omp parallel for num_threads (56)
for (int j=0;]<56; J+t)

comp_cycles (i, j,

work_cycles);}

1E-1
1E_2 [_ *——0—
[\ 2 @ . 4 . 2 4 . 4 4 L . 2
1E-3
00— 00—
1E-4 ‘Lower is better
0.1 1 10

Alpha (A)

—e— BOLT (baseline)j-e—BOLT (opt)
—e— GCC (taskloop) Intel (taskloop)

—eo—LLVM (taskloop)----- Ideal

¢ Parallel regions of BOLT are fast asaskloop !

24

5
Evaluation of BOLT with Two Applications

A # of threads for outer loops is usuatllgt to # of cores

¢ I.e., if not nested, oversubscription does not happen.

A However, many layers are OpenMP parallelized, which can
unintentionally result in nesting

A Twoshowcases:

1. 2. Qbox
Qbox
KIFMM OpenMP parallelized code
OpenMP parallelized code LAPACIScaLAPAGK | FETW3
BI—AC. BLAS OpenMP
OpenMP I OpenMP parallelized code I parallelized code

parallelized code parallelized code

OpenMP Runtime System
OpenMP Runtime System MP|

25

Evaluation: KIFMM

A KIFMM1: highly optimized Mbody solver
¢ N-body solver is one of the heaviest kernels
In astronomy simulations.

A Multiple layers are parallelized by Open

¢ BLAS and FFT. KIFMM
OpenMP parallelized code

A We focus orthe upward phase

In KIFMM BLAS
OpenMP
for (int i =0 i < max levels i++) parallelized code parallelized code
#pragma omp parallel for B :
for (int j=0:j< nodecounts[i]; j++){ ST PRI S
[..];
dgem\(...); /I dgem\) creates a parallel region.
}

[*] A. Chandramowlishwaraat al., "Brief Announcement: Towards a Communication Optimal Fast Multipole Method and Its Implicaixasedle SPAA '12, 20172

26

Performance: KIFMM

void kifmm_upward ():
for (int 1 =0; I < max_levels ; i++)
#pragma omp parallel for num_threads (56)
for (int j=0;j< nodecounts [1]; j++){

[..];

dgem\(...); Il creates a parallel region.
}
void dgemy(...): // in MKL
#pragma omp parallel for num_threads (N)
for (int 1 =0; i <[.] I ++)

dgemv_sequential (...);

A Experiments on Skylake 56 cores.

¢ # of threads for the outer parallel region =

2.
8~
CH
il
+
£ 21w my
oS
Qo [|
OF
.g_l
0 =
o @00
a

|
0 Higher is better

1 10 100
of inner threads (N)

NP=12, # pts = 100,000
—o—BOLT (opt) —e—Intel (nobind) Intel (true)
Intel (close) —e—Intel (spread) ——Intel (dyn)

Different Intel OpenMP configurations:
nobind=false)true,close,spreadproc_bind
dyn: MKL_DYNAMIC=true

Note that other parameters & hand tuned
(see the paper).

¢ # of threads for the inner parallel region = N (changed)

A Two important results:

¢ N=1 (flat);performance is almost the same.

¢ _N>1 (nested)BOLT further boosts performance

27

LAPACKICALAPAC

FFTW3

BLAS

OpenMP

OpenMP parallelized code | parallelized code

OpenMP parallelized codlé".‘
<

/Il FFT backward

#pragma omp parallel for

for (int 1 =0;
fftw_execute (plan_2d, ...);

void fftw_execute (...):
[..];
#pragma omp parallel for
for (int i =0; i <[.]
fftw_sequential (...);

I <num/ nprocs; i++)

/l'in FFTW3

num_threads (N)
| ++)

] F.GygE & ! N K QboR A scalziiE firseJNA y OA LX Sa Y2t SOdzf NJ Reyl YAOa O2RSzZé¢ L. a W2dayanf2008 F

28

X axis: # of inner threads (N)

Performance- FFT In Qbox Y axis: relative performance (BOLT + N=1: 1
4 4 4
3 3 3
/l FFT backward 2 2 2
#pragma omp parallel for 1 % 1 % 1 Ontm
for (int i =0; i <num/ nprocs; i++) 0 0 0
N B 64 atoms / 16 MPI 96 atoms / 16 MPI 128 atoms / 16 MPI
void fftw_execute (...): /l'in FFTW3 4 PraGesses 4 ProGesses 4 PIOGESses
[---]; 3 3 3
#pragma omp paralllel for num_threads (N) 2 2 2
for (int 1 =0; i <[.] i ++) 1 1 1 %
fftw_sequential (...); 0 0 0
] 10 100 100 10 100
—e—BOLT (opt) —e—Intel (nobind) —e—Intel (true) 64 atoms / 32 MPI 96 atoms / 32 MPI 128 atoms / 32 MPI
Intel (close) —e—Intel (spread) —e—Intel (dyn) processes Processes Processes
Intel OpenMP configurationsiobind=false)true,close,spreadproc_bind dyn: OMP_DYNAMIC=true 4 4 4
3 3 3
A nprocs = # of MPI nodes 2 2 é 2 ; :
. . . 1 50 1 1
A num (andfftw size) is proportional 5 5 5
to # of atoms. 1 10 100 1 10 100 1 10 100
64 atoms / 48 MPI 96 atoms / 48 MPI 128 atoms / 48 MPI
Experiments on KNL 7230 64 cores. processes processes processe
threads for the outer regions = 64 Higher is better
threads for the inner regions = N (changed)

r

A N=1 (flat):performance is almost the same

A N>1 (nested)BOLT further increased performance

29

Lightweight Threads for OpenMP+MPI

MPI + OpenMP from an MPI viewpoint

#*5%%, U.S. DEPARTMENT OF
(@) ENERGY

o T — =~
Fe Z N
1 1) “
1
1 =3 1
1 o |2 21
1 Wl O “
“ z S| W S M |
lsx5551(8 |8 G4
1 =) 555 |< |5 i
i3 33 ¢ i
" % o 0 = 1
> =) > x ~
\ [L 1T y
/Il IIIIIIIIIIIIIIII -7
e ST -
N
’ \
“ w “
1 _H_Ln__u_ L e I
[0y o L
i OO X e g N1
R K\, = ol
“ . ., % m _q
1 s e O 1
1 i 1
1 is !
\ il
o
/
/I‘ ||||||||||||||| -7
- -
N\
4 k] 3
: o || s I
1) £1]l= + !
1 c + = - 1
T ERIENL = i
1 T = = = e
T EN R S |
0 i [2|[E|18]|2] =t
i allo 2 S m 1
= | < ol| E [
O ! HE.
1 o 1
(@ © /
/I‘ ||||||||||||||| -
O e l/
Ov ;
|
| - “ (= n — 1
1 =) 1
I Sl 3 21
! =1 = Si
1 a !
o : *I2 8
N =
1 = %) o A_
|| oo 5|2 2=
1 1
II‘ ||||||||||||||| -7
(7))

o

o

Margo: Mercury RP

~

DR ——

Qm/\(
o
1
i
N N
i
(7))
)
7\< Q
O
@)
(@)}
Q000|<) ¢
3 <) !
< 1
2 '
)
1
I
I
I
I
i
i \
/
/
]
1
||||||||||||||||| ~ I
—~\]
—) =]
O]
< o1 1
— Qg \
N ol
>l l—> 7 S
— =
— ol
=P || = - O 1
— !
N e o o o o o o o o B \\\

Progress

ES

- Argobots

i _
| P“
, =

g =1

} o

2% S |1

m,O m-

: g |

52 X 1

S 1

Ew 1

]

IIIIIIIIIIIIIIII ‘\\
e ~
\

i

N1

Ol

<1

o |1

=

£

1

1

]

/

S —— Pid

31

High Interoperability with MPI [*]

A MPI+BOLT can improve
performance via Argobots

¢ ULTs are flexibly scheduled
without kernel intervention.

w Better communication and
computation overlapping

w Latency hiding of blocking
operations.

ULT ULT ULT
ULT ULT
ULT ULT < =t
Pthreads Pthreads Pthreads
Argobots
g ——

Schedule another ULT while waiting with very low overheac

S.

[*] H. Lu et al. "MPI+ULT: Overlapping Communication and Computation witH_&gelr Threads", HPCC '15, 20

32

BOLT/Argobots + MPI -)
w30 —o—U=1
. = —e-U=2
A MPICH + BOLT/Argobotsis § @ ~e-U=4
g U=8
officially supported. : e ets
o 1 64 4096 262144

Message Size (Bytes)

Increasing threads (U)can reduce latendy.

Point-to-point latency with 36 Haswell cores and
Mellanox FDR (U = # of ULTs pe}, B&PICH

tests; as good aBthreads
(We test it weekly)

[Stable Passes all the major multithreade

A Initial support for Open MPI +
BOLT/Argobots has been merged
to the master.

¢ Incollaborationwith SNL and LANL
Qthreads/OperMPlteams.

{It now covers about 80% of the MPIC

i

Layer

twork Interface

Shared Memroy

| Byte Transfer

(e

[Memory Pool
Threading

—

(Pthreads) _Qthreads) (Argobots)|

multithreaded tests. It is under active
development. 33

Argonne°

NATIONAL LABORATORY

Conclusions

How to use BOLT?

4 U.S. DEPARTMENT OF
'ENERGY

High ABI Compatibility

A BOLT keeps compatibility with the LLVM OpenMP interface.

¢ Several compilers (GCC, Intel Compilers, and Clang/LLVM)
can be used as a frontend.

w I.e., BOLT does not require a special compiler.

app is compiled for GCC or Intel OpenMP
run app over a default OpenMP library
./app argl arg2 ...

run app over BOLT
LD_PRELOAD=$BOLT_LIB_PATH ./app argl arg2 ...

GNU
Compiler

Intel
Compiler

GCC
OpenMP

POSIX Threads (Pthreads)

¢ No need to recompile existing applications and librafegBOLT!

>

Note: some existing proposals require special compilers.

Support of the Latest Features

A BOLT supports OpenMR0 witha few exceptions.

A .

¢ As the original LLVM OpenMP supports.
h[¢ &dzLJLI2NIL Ay Of dzRSa X
¢ Basic parallel regior(parallel for/section)

¢ Taskstask,taskloop task depend
¢ Target offloading(e.g., offload computation to a GPU device)

w BOLT itseldloes not affect the GPU performance
¢ Synchronizationsingle/master/barrier/orderomp_lock
¢ SIMD directivessupported by compilers
h[¢ OdzNNByufeée R2Sa y2i adz.
¢ OMPT & OMPD (though they are OpenMP 5.0 features)

¢ Taskcancellation

C mutexinoutset
36

How to Build BOLT?

1. UseSpack
$ spack install bolt # only BOLT
$ spack install solive # all the SOLLVEcomponents

2. Use the latest versiom(tps://github.com/pmodels/boli

¢ Please follow the instruction.

$ git clone https://github.com/pmodels/bolt.git $BOLT_DIR
$ cd $BOLT _DIR
to use the very latest version:
git checkout latest
$git submodule update -- init
$ mkdir build && cd build
$ cmake ../ -DCMAKE_INSTALL PREFBGLT INSTALL_DIR
- DCMAKE_BUILD_TYPE=Releas®LIBOMP_USE_ARGOBOTS=on
$ make -jinstall

37

https://github.com/pmodels/bolt

How to Use BOLT?

A No recompilation needed. Just change the runtime library.
A [Recommended] Set LD _LIRBARY_PATH

B , $m,)" 2129m0! 4("28B"/, 4YET OOAI |l YI EAk B|DZ $

¢ Please check if BOLT is loadedidaly

B ,$m,)" 21 29m0! 4("28"/, 4YET OOAI lloY1./grégk 8|DZ $
linux -vdso.so.1=> (0x00007fff3bbbe000)
libm.s0.6 => /lib64/libm.s0.6 (0x00007f6e9fc29000)
liblomp5.s0 => /home/user/bolt/install/lib/libiomp5.s0
(0x00007f6€9f994000)

If you cannot find it, LD_LIBRARY _PAT

A [Fallback] Set LD PRELOAD | does notwork. It often happens if you u
GCC — \GCC as a frontend.

B ,$mM02%, /! $"28B"/, 4YEI OOAI T YI EAYI EACI i|pt C

Intel C/C++ Compilers

B ,$mM02%, /! $"28B"/, 4YET OOAI 1 YI EAYI EAEI i|PlIst

Clang/LLVM

B ,$m02%,/!$"as"/,4YETOOAiiYiEAYiEATiinT
38

BOLT: Lightweight OpenMP Runtime OpenMP

A BOLT: dightweight OpenMP runtime systebased on LLVM
OpenMP for efficient threading in OpenMP + X.

1. Extremely lightweight OpenMP threa(Eka.omp parallel for) that
can efficiently handle nested parallelism.

2. High interoperabilitywith MPI.

https://www.bolt-omp.orqg/

¢ Pleasevisit us!
https://qithub.com/pmodels/bolt

2N 3223ftS a. h[¢ hLISyat €

39

https://www.bolt-omp.org/
https://github.com/pmodels/bolt

Thank You for Listening!

$ spack install bolt # only BOLT

A BOL'_rRe|ated PUincationS $ spack install sollve # all the SOLLVE components

x H. Lu et al. "MPI+ULT: Overlapping Communication and Computation witi&ssrThreads”, HPCC '15,

2015

x A.Castellcet al. A Review of Lightweight Thread Approaches for High Performance Computing

CLUSTERSG, 2016

x S.Seoet al. "Argobots: A Lightweight LelvevelThreading /
and Tasking FrameworkTPDS2018

x S. lwasaki et al., "Lessons Learned from Analyxymgmic
Promotionfor UserLevel Threadidy
SC18, 2018

x {® Lglal1A SG |t ®ZParalldh[¢V
Regionsvith User] S@St ¢ KNBI2BB®H I t
(Best Paper Awarjl

x {® Lol all1Ar S Iftozg al!lyl el
https://www.anl.gov/mcs/article/researchersvi

~

TradeOff in Implementing Usektevel Threads", TPDS, 2020\ bestpaperawardat-pact19

"

A TheBOLT work is part of the ECP SOLLVE project.

Acknowledgment -:“,;
Thisresearchwassupportedby the Exascal€omputingProject(17-SG20-SC)a joint projectof the U.S Departmentof 9 y' § N@fieed&Scienceand National
NuclearSecurity:Administration, responsiblefor deliveringa capableexascaleecosystem,including software, applications,and hardware technology, to \(_—
supportthey | (0 AeRagc@l@omputingimperative S

)

